3.654 \(\int \frac{(d f+e f x)^4}{(a+b (d+e x)^2+c (d+e x)^4)^3} \, dx\)

Optimal. Leaf size=353 \[ -\frac{f^4 (d+e x) \left (-4 a c+7 b^2+12 b c (d+e x)^2\right )}{8 e \left (b^2-4 a c\right )^2 \left (a+b (d+e x)^2+c (d+e x)^4\right )}+\frac{f^4 (d+e x) \left (2 a+b (d+e x)^2\right )}{4 e \left (b^2-4 a c\right ) \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}+\frac{3 \sqrt{c} f^4 \left (-2 b \sqrt{b^2-4 a c}+4 a c+3 b^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{4 \sqrt{2} e \left (b^2-4 a c\right )^{5/2} \sqrt{b-\sqrt{b^2-4 a c}}}-\frac{3 \sqrt{c} f^4 \left (2 b \sqrt{b^2-4 a c}+4 a c+3 b^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{4 \sqrt{2} e \left (b^2-4 a c\right )^{5/2} \sqrt{\sqrt{b^2-4 a c}+b}} \]

[Out]

(f^4*(d + e*x)*(2*a + b*(d + e*x)^2))/(4*(b^2 - 4*a*c)*e*(a + b*(d + e*x)^2 + c*(d + e*x)^4)^2) - (f^4*(d + e*
x)*(7*b^2 - 4*a*c + 12*b*c*(d + e*x)^2))/(8*(b^2 - 4*a*c)^2*e*(a + b*(d + e*x)^2 + c*(d + e*x)^4)) + (3*Sqrt[c
]*(3*b^2 + 4*a*c - 2*b*Sqrt[b^2 - 4*a*c])*f^4*ArcTan[(Sqrt[2]*Sqrt[c]*(d + e*x))/Sqrt[b - Sqrt[b^2 - 4*a*c]]])
/(4*Sqrt[2]*(b^2 - 4*a*c)^(5/2)*Sqrt[b - Sqrt[b^2 - 4*a*c]]*e) - (3*Sqrt[c]*(3*b^2 + 4*a*c + 2*b*Sqrt[b^2 - 4*
a*c])*f^4*ArcTan[(Sqrt[2]*Sqrt[c]*(d + e*x))/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(4*Sqrt[2]*(b^2 - 4*a*c)^(5/2)*Sqrt
[b + Sqrt[b^2 - 4*a*c]]*e)

________________________________________________________________________________________

Rubi [A]  time = 0.870027, antiderivative size = 353, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.152, Rules used = {1142, 1120, 1178, 1166, 205} \[ -\frac{f^4 (d+e x) \left (-4 a c+7 b^2+12 b c (d+e x)^2\right )}{8 e \left (b^2-4 a c\right )^2 \left (a+b (d+e x)^2+c (d+e x)^4\right )}+\frac{f^4 (d+e x) \left (2 a+b (d+e x)^2\right )}{4 e \left (b^2-4 a c\right ) \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}+\frac{3 \sqrt{c} f^4 \left (-2 b \sqrt{b^2-4 a c}+4 a c+3 b^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{4 \sqrt{2} e \left (b^2-4 a c\right )^{5/2} \sqrt{b-\sqrt{b^2-4 a c}}}-\frac{3 \sqrt{c} f^4 \left (2 b \sqrt{b^2-4 a c}+4 a c+3 b^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{4 \sqrt{2} e \left (b^2-4 a c\right )^{5/2} \sqrt{\sqrt{b^2-4 a c}+b}} \]

Antiderivative was successfully verified.

[In]

Int[(d*f + e*f*x)^4/(a + b*(d + e*x)^2 + c*(d + e*x)^4)^3,x]

[Out]

(f^4*(d + e*x)*(2*a + b*(d + e*x)^2))/(4*(b^2 - 4*a*c)*e*(a + b*(d + e*x)^2 + c*(d + e*x)^4)^2) - (f^4*(d + e*
x)*(7*b^2 - 4*a*c + 12*b*c*(d + e*x)^2))/(8*(b^2 - 4*a*c)^2*e*(a + b*(d + e*x)^2 + c*(d + e*x)^4)) + (3*Sqrt[c
]*(3*b^2 + 4*a*c - 2*b*Sqrt[b^2 - 4*a*c])*f^4*ArcTan[(Sqrt[2]*Sqrt[c]*(d + e*x))/Sqrt[b - Sqrt[b^2 - 4*a*c]]])
/(4*Sqrt[2]*(b^2 - 4*a*c)^(5/2)*Sqrt[b - Sqrt[b^2 - 4*a*c]]*e) - (3*Sqrt[c]*(3*b^2 + 4*a*c + 2*b*Sqrt[b^2 - 4*
a*c])*f^4*ArcTan[(Sqrt[2]*Sqrt[c]*(d + e*x))/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(4*Sqrt[2]*(b^2 - 4*a*c)^(5/2)*Sqrt
[b + Sqrt[b^2 - 4*a*c]]*e)

Rule 1142

Int[(u_)^(m_.)*((a_.) + (b_.)*(v_)^2 + (c_.)*(v_)^4)^(p_.), x_Symbol] :> Dist[u^m/(Coefficient[v, x, 1]*v^m),
Subst[Int[x^m*(a + b*x^2 + c*x^(2*2))^p, x], x, v], x] /; FreeQ[{a, b, c, m, p}, x] && LinearPairQ[u, v, x]

Rule 1120

Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> -Simp[(d^3*(d*x)^(m - 3)*(2*a +
 b*x^2)*(a + b*x^2 + c*x^4)^(p + 1))/(2*(p + 1)*(b^2 - 4*a*c)), x] + Dist[d^4/(2*(p + 1)*(b^2 - 4*a*c)), Int[(
d*x)^(m - 4)*(2*a*(m - 3) + b*(m + 4*p + 3)*x^2)*(a + b*x^2 + c*x^4)^(p + 1), x], x] /; FreeQ[{a, b, c, d}, x]
 && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && GtQ[m, 3] && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])

Rule 1178

Int[((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(x*(a*b*e - d*(b^2 - 2*
a*c) - c*(b*d - 2*a*e)*x^2)*(a + b*x^2 + c*x^4)^(p + 1))/(2*a*(p + 1)*(b^2 - 4*a*c)), x] + Dist[1/(2*a*(p + 1)
*(b^2 - 4*a*c)), Int[Simp[(2*p + 3)*d*b^2 - a*b*e - 2*a*c*d*(4*p + 5) + (4*p + 7)*(d*b - 2*a*e)*c*x^2, x]*(a +
 b*x^2 + c*x^4)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e
^2, 0] && LtQ[p, -1] && IntegerQ[2*p]

Rule 1166

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
 q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{(d f+e f x)^4}{\left (a+b (d+e x)^2+c (d+e x)^4\right )^3} \, dx &=\frac{f^4 \operatorname{Subst}\left (\int \frac{x^4}{\left (a+b x^2+c x^4\right )^3} \, dx,x,d+e x\right )}{e}\\ &=\frac{f^4 (d+e x) \left (2 a+b (d+e x)^2\right )}{4 \left (b^2-4 a c\right ) e \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}-\frac{f^4 \operatorname{Subst}\left (\int \frac{2 a-5 b x^2}{\left (a+b x^2+c x^4\right )^2} \, dx,x,d+e x\right )}{4 \left (b^2-4 a c\right ) e}\\ &=\frac{f^4 (d+e x) \left (2 a+b (d+e x)^2\right )}{4 \left (b^2-4 a c\right ) e \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}-\frac{f^4 (d+e x) \left (7 b^2-4 a c+12 b c (d+e x)^2\right )}{8 \left (b^2-4 a c\right )^2 e \left (a+b (d+e x)^2+c (d+e x)^4\right )}+\frac{f^4 \operatorname{Subst}\left (\int \frac{3 a \left (b^2+4 a c\right )-12 a b c x^2}{a+b x^2+c x^4} \, dx,x,d+e x\right )}{8 a \left (b^2-4 a c\right )^2 e}\\ &=\frac{f^4 (d+e x) \left (2 a+b (d+e x)^2\right )}{4 \left (b^2-4 a c\right ) e \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}-\frac{f^4 (d+e x) \left (7 b^2-4 a c+12 b c (d+e x)^2\right )}{8 \left (b^2-4 a c\right )^2 e \left (a+b (d+e x)^2+c (d+e x)^4\right )}+\frac{\left (3 c \left (3 b^2+4 a c-2 b \sqrt{b^2-4 a c}\right ) f^4\right ) \operatorname{Subst}\left (\int \frac{1}{\frac{b}{2}-\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx,x,d+e x\right )}{8 \left (b^2-4 a c\right )^{5/2} e}-\frac{\left (3 c \left (3 b^2+4 a c+2 b \sqrt{b^2-4 a c}\right ) f^4\right ) \operatorname{Subst}\left (\int \frac{1}{\frac{b}{2}+\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx,x,d+e x\right )}{8 \left (b^2-4 a c\right )^{5/2} e}\\ &=\frac{f^4 (d+e x) \left (2 a+b (d+e x)^2\right )}{4 \left (b^2-4 a c\right ) e \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}-\frac{f^4 (d+e x) \left (7 b^2-4 a c+12 b c (d+e x)^2\right )}{8 \left (b^2-4 a c\right )^2 e \left (a+b (d+e x)^2+c (d+e x)^4\right )}+\frac{3 \sqrt{c} \left (3 b^2+4 a c-2 b \sqrt{b^2-4 a c}\right ) f^4 \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{4 \sqrt{2} \left (b^2-4 a c\right )^{5/2} \sqrt{b-\sqrt{b^2-4 a c}} e}-\frac{3 \sqrt{c} \left (3 b^2+4 a c+2 b \sqrt{b^2-4 a c}\right ) f^4 \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{b+\sqrt{b^2-4 a c}}}\right )}{4 \sqrt{2} \left (b^2-4 a c\right )^{5/2} \sqrt{b+\sqrt{b^2-4 a c}} e}\\ \end{align*}

Mathematica [A]  time = 4.61255, size = 331, normalized size = 0.94 \[ \frac{f^4 \left (\frac{(d+e x) \left (4 a c-7 b^2-12 b c (d+e x)^2\right )}{\left (b^2-4 a c\right )^2 \left (a+b (d+e x)^2+c (d+e x)^4\right )}-\frac{2 \left (-2 a (d+e x)-b (d+e x)^3\right )}{\left (b^2-4 a c\right ) \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}+\frac{3 \sqrt{2} \sqrt{c} \left (-2 b \sqrt{b^2-4 a c}+4 a c+3 b^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\left (b^2-4 a c\right )^{5/2} \sqrt{b-\sqrt{b^2-4 a c}}}-\frac{3 \sqrt{2} \sqrt{c} \left (2 b \sqrt{b^2-4 a c}+4 a c+3 b^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{\left (b^2-4 a c\right )^{5/2} \sqrt{\sqrt{b^2-4 a c}+b}}\right )}{8 e} \]

Antiderivative was successfully verified.

[In]

Integrate[(d*f + e*f*x)^4/(a + b*(d + e*x)^2 + c*(d + e*x)^4)^3,x]

[Out]

(f^4*((-2*(-2*a*(d + e*x) - b*(d + e*x)^3))/((b^2 - 4*a*c)*(a + b*(d + e*x)^2 + c*(d + e*x)^4)^2) + ((d + e*x)
*(-7*b^2 + 4*a*c - 12*b*c*(d + e*x)^2))/((b^2 - 4*a*c)^2*(a + b*(d + e*x)^2 + c*(d + e*x)^4)) + (3*Sqrt[2]*Sqr
t[c]*(3*b^2 + 4*a*c - 2*b*Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*(d + e*x))/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/
((b^2 - 4*a*c)^(5/2)*Sqrt[b - Sqrt[b^2 - 4*a*c]]) - (3*Sqrt[2]*Sqrt[c]*(3*b^2 + 4*a*c + 2*b*Sqrt[b^2 - 4*a*c])
*ArcTan[(Sqrt[2]*Sqrt[c]*(d + e*x))/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/((b^2 - 4*a*c)^(5/2)*Sqrt[b + Sqrt[b^2 - 4*a
*c]])))/(8*e)

________________________________________________________________________________________

Maple [C]  time = 0.04, size = 3432, normalized size = 9.7 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*f*x+d*f)^4/(a+b*(e*x+d)^2+c*(e*x+d)^4)^3,x)

[Out]

-6*f^4/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2*d*e/(16*a^2*c
^2-8*a*b^2*c+b^4)*x^2*a*b*c+3/16*f^4/(16*a^2*c^2-8*a*b^2*c+b^4)/e*sum((-4*_R^2*b*c*e^2-8*_R*b*c*d*e-4*b*c*d^2+
4*a*c+b^2)/(2*_R^3*c*e^3+6*_R^2*c*d*e^2+6*_R*c*d^2*e+2*c*d^3+_R*b*e+b*d)*ln(x-_R),_R=RootOf(c*e^4*_Z^4+4*c*d*e
^3*_Z^3+(6*c*d^2*e^2+b*e^2)*_Z^2+(4*c*d^3*e+2*b*d*e)*_Z+c*d^4+b*d^2+a))-5/8*f^4/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d
^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2*e^2/(16*a^2*c^2-8*a*b^2*c+b^4)*x^3*b^3-15/8*f^4/(c
*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2/(16*a^2*c^2-8*a*b^2*c+
b^4)*x*b^3*d^2-3/2*f^4/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)
^2/(16*a^2*c^2-8*a*b^2*c+b^4)*x*a^2*c-3/8*f^4/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c
*d^4+2*b*d*e*x+b*d^2+a)^2/(16*a^2*c^2-8*a*b^2*c+b^4)*x*a*b^2-5/8*f^4/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+
4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2*d^3/e/(16*a^2*c^2-8*a*b^2*c+b^4)*b^3+5*f^4/(c*e^4*x^4+4*c*d*e
^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2*d^3*e/(16*a^2*c^2-8*a*b^2*c+b^4)*x^2*a
*c^2-95/4*f^4/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2*d^3*e/
(16*a^2*c^2-8*a*b^2*c+b^4)*x^2*b^2*c-6*f^4/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^
4+2*b*d*e*x+b*d^2+a)^2/(16*a^2*c^2-8*a*b^2*c+b^4)*x*a*b*c*d^2-2*f^4/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4
*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2*d^3/e/(16*a^2*c^2-8*a*b^2*c+b^4)*a*b*c-21/2*f^4/(c*e^4*x^4+4*c
*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2*c^2*d*e^5*b/(16*a^2*c^2-8*a*b^2*c+
b^4)*x^6-63/2*f^4/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2*c^
2*e^4/(16*a^2*c^2-8*a*b^2*c+b^4)*x^5*d^2*b-105/2*f^4/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^
2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2*c^2*d^3*e^3/(16*a^2*c^2-8*a*b^2*c+b^4)*x^4*b+5/2*f^4/(c*e^4*x^4+4*c*d*e^3*x^3
+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2*c^2*d*e^3/(16*a^2*c^2-8*a*b^2*c+b^4)*x^4*a-9
5/8*f^4/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2*c*d*e^3/(16*
a^2*c^2-8*a*b^2*c+b^4)*x^4*b^2-105/2*f^4/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+
2*b*d*e*x+b*d^2+a)^2*e^2/(16*a^2*c^2-8*a*b^2*c+b^4)*x^3*b*c^2*d^4+5*f^4/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x
^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2*e^2/(16*a^2*c^2-8*a*b^2*c+b^4)*x^3*a*c^2*d^2-95/4*f^4/(c*e
^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2*e^2/(16*a^2*c^2-8*a*b^2*
c+b^4)*x^3*b^2*c*d^2-2*f^4/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^
2+a)^2*e^2/(16*a^2*c^2-8*a*b^2*c+b^4)*x^3*a*b*c-63/2*f^4/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+
b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2*d^5*e/(16*a^2*c^2-8*a*b^2*c+b^4)*x^2*b*c^2+1/2*f^4/(c*e^4*x^4+4*c*d*e^3*x
^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2*d^5/e/(16*a^2*c^2-8*a*b^2*c+b^4)*a*c^2+1/2
*f^4/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2*c^2*e^4/(16*a^2
*c^2-8*a*b^2*c+b^4)*x^5*a-19/8*f^4/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*
e*x+b*d^2+a)^2*d^5/e/(16*a^2*c^2-8*a*b^2*c+b^4)*b^2*c-3/2*f^4/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3
*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2*d/e/(16*a^2*c^2-8*a*b^2*c+b^4)*a^2*c-3/8*f^4/(c*e^4*x^4+4*c*d*e^3*x^
3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2*d/e/(16*a^2*c^2-8*a*b^2*c+b^4)*a*b^2-3/2*f^
4/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2*c^2*e^6*b/(16*a^2*
c^2-8*a*b^2*c+b^4)*x^7-19/8*f^4/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x
+b*d^2+a)^2*c*e^4/(16*a^2*c^2-8*a*b^2*c+b^4)*x^5*b^2-15/8*f^4/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3
*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2*d*e/(16*a^2*c^2-8*a*b^2*c+b^4)*x^2*b^3-21/2*f^4/(c*e^4*x^4+4*c*d*e^3
*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2/(16*a^2*c^2-8*a*b^2*c+b^4)*x*b*c^2*d^6+5
/2*f^4/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2/(16*a^2*c^2-8
*a*b^2*c+b^4)*x*a*c^2*d^4-95/8*f^4/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*
e*x+b*d^2+a)^2/(16*a^2*c^2-8*a*b^2*c+b^4)*x*b^2*c*d^4-3/2*f^4/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3
*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2*d^7/e/(16*a^2*c^2-8*a*b^2*c+b^4)*b*c^2

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*f*x+d*f)^4/(a+b*(e*x+d)^2+c*(e*x+d)^4)^3,x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [B]  time = 3.69373, size = 14596, normalized size = 41.35 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*f*x+d*f)^4/(a+b*(e*x+d)^2+c*(e*x+d)^4)^3,x, algorithm="fricas")

[Out]

-1/16*(24*b*c^2*e^7*f^4*x^7 + 168*b*c^2*d*e^6*f^4*x^6 + 2*(252*b*c^2*d^2 + 19*b^2*c - 4*a*c^2)*e^5*f^4*x^5 + 1
0*(84*b*c^2*d^3 + (19*b^2*c - 4*a*c^2)*d)*e^4*f^4*x^4 + 2*(420*b*c^2*d^4 + 5*b^3 + 16*a*b*c + 10*(19*b^2*c - 4
*a*c^2)*d^2)*e^3*f^4*x^3 + 2*(252*b*c^2*d^5 + 10*(19*b^2*c - 4*a*c^2)*d^3 + 3*(5*b^3 + 16*a*b*c)*d)*e^2*f^4*x^
2 + 2*(84*b*c^2*d^6 + 5*(19*b^2*c - 4*a*c^2)*d^4 + 3*a*b^2 + 12*a^2*c + 3*(5*b^3 + 16*a*b*c)*d^2)*e*f^4*x + 2*
(12*b*c^2*d^7 + (19*b^2*c - 4*a*c^2)*d^5 + (5*b^3 + 16*a*b*c)*d^3 + 3*(a*b^2 + 4*a^2*c)*d)*f^4 + 3*sqrt(1/2)*(
(b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*e^9*x^8 + 8*(b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d*e^8*x^7 + 2*(b^5*c - 8
*a*b^3*c^2 + 16*a^2*b*c^3 + 14*(b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d^2)*e^7*x^6 + 4*(14*(b^4*c^2 - 8*a*b^2*c^
3 + 16*a^2*c^4)*d^3 + 3*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d)*e^6*x^5 + (b^6 - 6*a*b^4*c + 32*a^3*c^3 + 70*(
b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d^4 + 30*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d^2)*e^5*x^4 + 4*(14*(b^4*c^
2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d^5 + 10*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d^3 + (b^6 - 6*a*b^4*c + 32*a^3*c^
3)*d)*e^4*x^3 + 2*(14*(b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d^6 + a*b^5 - 8*a^2*b^3*c + 16*a^3*b*c^2 + 15*(b^5*
c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d^4 + 3*(b^6 - 6*a*b^4*c + 32*a^3*c^3)*d^2)*e^3*x^2 + 4*(2*(b^4*c^2 - 8*a*b^2*
c^3 + 16*a^2*c^4)*d^7 + 3*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d^5 + (b^6 - 6*a*b^4*c + 32*a^3*c^3)*d^3 + (a*b
^5 - 8*a^2*b^3*c + 16*a^3*b*c^2)*d)*e^2*x + ((b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d^8 + 2*(b^5*c - 8*a*b^3*c^2
 + 16*a^2*b*c^3)*d^6 + a^2*b^4 - 8*a^3*b^2*c + 16*a^4*c^2 + (b^6 - 6*a*b^4*c + 32*a^3*c^3)*d^4 + 2*(a*b^5 - 8*
a^2*b^3*c + 16*a^3*b*c^2)*d^2)*e)*sqrt(-((b^5 + 40*a*b^3*c + 80*a^2*b*c^2)*f^8 + (a*b^10 - 20*a^2*b^8*c + 160*
a^3*b^6*c^2 - 640*a^4*b^4*c^3 + 1280*a^5*b^2*c^4 - 1024*a^6*c^5)*sqrt(f^16/((a^2*b^10 - 20*a^3*b^8*c + 160*a^4
*b^6*c^2 - 640*a^5*b^4*c^3 + 1280*a^6*b^2*c^4 - 1024*a^7*c^5)*e^4))*e^2)/((a*b^10 - 20*a^2*b^8*c + 160*a^3*b^6
*c^2 - 640*a^4*b^4*c^3 + 1280*a^5*b^2*c^4 - 1024*a^6*c^5)*e^2))*log(27*(5*b^4*c + 40*a*b^2*c^2 + 16*a^2*c^3)*e
*f^12*x + 27*(5*b^4*c + 40*a*b^2*c^2 + 16*a^2*c^3)*d*f^12 + 27/2*sqrt(1/2)*((b^8 - 8*a*b^6*c + 128*a^3*b^2*c^3
 - 256*a^4*c^4)*e*f^8 - (a*b^13 - 8*a^2*b^11*c - 80*a^3*b^9*c^2 + 1280*a^4*b^7*c^3 - 6400*a^5*b^5*c^4 + 14336*
a^6*b^3*c^5 - 12288*a^7*b*c^6)*sqrt(f^16/((a^2*b^10 - 20*a^3*b^8*c + 160*a^4*b^6*c^2 - 640*a^5*b^4*c^3 + 1280*
a^6*b^2*c^4 - 1024*a^7*c^5)*e^4))*e^3)*sqrt(-((b^5 + 40*a*b^3*c + 80*a^2*b*c^2)*f^8 + (a*b^10 - 20*a^2*b^8*c +
 160*a^3*b^6*c^2 - 640*a^4*b^4*c^3 + 1280*a^5*b^2*c^4 - 1024*a^6*c^5)*sqrt(f^16/((a^2*b^10 - 20*a^3*b^8*c + 16
0*a^4*b^6*c^2 - 640*a^5*b^4*c^3 + 1280*a^6*b^2*c^4 - 1024*a^7*c^5)*e^4))*e^2)/((a*b^10 - 20*a^2*b^8*c + 160*a^
3*b^6*c^2 - 640*a^4*b^4*c^3 + 1280*a^5*b^2*c^4 - 1024*a^6*c^5)*e^2))) - 3*sqrt(1/2)*((b^4*c^2 - 8*a*b^2*c^3 +
16*a^2*c^4)*e^9*x^8 + 8*(b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d*e^8*x^7 + 2*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3
 + 14*(b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d^2)*e^7*x^6 + 4*(14*(b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d^3 + 3*(
b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d)*e^6*x^5 + (b^6 - 6*a*b^4*c + 32*a^3*c^3 + 70*(b^4*c^2 - 8*a*b^2*c^3 + 1
6*a^2*c^4)*d^4 + 30*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d^2)*e^5*x^4 + 4*(14*(b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*
c^4)*d^5 + 10*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d^3 + (b^6 - 6*a*b^4*c + 32*a^3*c^3)*d)*e^4*x^3 + 2*(14*(b^
4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d^6 + a*b^5 - 8*a^2*b^3*c + 16*a^3*b*c^2 + 15*(b^5*c - 8*a*b^3*c^2 + 16*a^2*
b*c^3)*d^4 + 3*(b^6 - 6*a*b^4*c + 32*a^3*c^3)*d^2)*e^3*x^2 + 4*(2*(b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d^7 + 3
*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d^5 + (b^6 - 6*a*b^4*c + 32*a^3*c^3)*d^3 + (a*b^5 - 8*a^2*b^3*c + 16*a^3
*b*c^2)*d)*e^2*x + ((b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d^8 + 2*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d^6 + a^
2*b^4 - 8*a^3*b^2*c + 16*a^4*c^2 + (b^6 - 6*a*b^4*c + 32*a^3*c^3)*d^4 + 2*(a*b^5 - 8*a^2*b^3*c + 16*a^3*b*c^2)
*d^2)*e)*sqrt(-((b^5 + 40*a*b^3*c + 80*a^2*b*c^2)*f^8 + (a*b^10 - 20*a^2*b^8*c + 160*a^3*b^6*c^2 - 640*a^4*b^4
*c^3 + 1280*a^5*b^2*c^4 - 1024*a^6*c^5)*sqrt(f^16/((a^2*b^10 - 20*a^3*b^8*c + 160*a^4*b^6*c^2 - 640*a^5*b^4*c^
3 + 1280*a^6*b^2*c^4 - 1024*a^7*c^5)*e^4))*e^2)/((a*b^10 - 20*a^2*b^8*c + 160*a^3*b^6*c^2 - 640*a^4*b^4*c^3 +
1280*a^5*b^2*c^4 - 1024*a^6*c^5)*e^2))*log(27*(5*b^4*c + 40*a*b^2*c^2 + 16*a^2*c^3)*e*f^12*x + 27*(5*b^4*c + 4
0*a*b^2*c^2 + 16*a^2*c^3)*d*f^12 - 27/2*sqrt(1/2)*((b^8 - 8*a*b^6*c + 128*a^3*b^2*c^3 - 256*a^4*c^4)*e*f^8 - (
a*b^13 - 8*a^2*b^11*c - 80*a^3*b^9*c^2 + 1280*a^4*b^7*c^3 - 6400*a^5*b^5*c^4 + 14336*a^6*b^3*c^5 - 12288*a^7*b
*c^6)*sqrt(f^16/((a^2*b^10 - 20*a^3*b^8*c + 160*a^4*b^6*c^2 - 640*a^5*b^4*c^3 + 1280*a^6*b^2*c^4 - 1024*a^7*c^
5)*e^4))*e^3)*sqrt(-((b^5 + 40*a*b^3*c + 80*a^2*b*c^2)*f^8 + (a*b^10 - 20*a^2*b^8*c + 160*a^3*b^6*c^2 - 640*a^
4*b^4*c^3 + 1280*a^5*b^2*c^4 - 1024*a^6*c^5)*sqrt(f^16/((a^2*b^10 - 20*a^3*b^8*c + 160*a^4*b^6*c^2 - 640*a^5*b
^4*c^3 + 1280*a^6*b^2*c^4 - 1024*a^7*c^5)*e^4))*e^2)/((a*b^10 - 20*a^2*b^8*c + 160*a^3*b^6*c^2 - 640*a^4*b^4*c
^3 + 1280*a^5*b^2*c^4 - 1024*a^6*c^5)*e^2))) + 3*sqrt(1/2)*((b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*e^9*x^8 + 8*(
b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d*e^8*x^7 + 2*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3 + 14*(b^4*c^2 - 8*a*b^2*
c^3 + 16*a^2*c^4)*d^2)*e^7*x^6 + 4*(14*(b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d^3 + 3*(b^5*c - 8*a*b^3*c^2 + 16*
a^2*b*c^3)*d)*e^6*x^5 + (b^6 - 6*a*b^4*c + 32*a^3*c^3 + 70*(b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d^4 + 30*(b^5*
c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d^2)*e^5*x^4 + 4*(14*(b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d^5 + 10*(b^5*c - 8*
a*b^3*c^2 + 16*a^2*b*c^3)*d^3 + (b^6 - 6*a*b^4*c + 32*a^3*c^3)*d)*e^4*x^3 + 2*(14*(b^4*c^2 - 8*a*b^2*c^3 + 16*
a^2*c^4)*d^6 + a*b^5 - 8*a^2*b^3*c + 16*a^3*b*c^2 + 15*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d^4 + 3*(b^6 - 6*a
*b^4*c + 32*a^3*c^3)*d^2)*e^3*x^2 + 4*(2*(b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d^7 + 3*(b^5*c - 8*a*b^3*c^2 + 1
6*a^2*b*c^3)*d^5 + (b^6 - 6*a*b^4*c + 32*a^3*c^3)*d^3 + (a*b^5 - 8*a^2*b^3*c + 16*a^3*b*c^2)*d)*e^2*x + ((b^4*
c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d^8 + 2*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d^6 + a^2*b^4 - 8*a^3*b^2*c + 16*
a^4*c^2 + (b^6 - 6*a*b^4*c + 32*a^3*c^3)*d^4 + 2*(a*b^5 - 8*a^2*b^3*c + 16*a^3*b*c^2)*d^2)*e)*sqrt(-((b^5 + 40
*a*b^3*c + 80*a^2*b*c^2)*f^8 - (a*b^10 - 20*a^2*b^8*c + 160*a^3*b^6*c^2 - 640*a^4*b^4*c^3 + 1280*a^5*b^2*c^4 -
 1024*a^6*c^5)*sqrt(f^16/((a^2*b^10 - 20*a^3*b^8*c + 160*a^4*b^6*c^2 - 640*a^5*b^4*c^3 + 1280*a^6*b^2*c^4 - 10
24*a^7*c^5)*e^4))*e^2)/((a*b^10 - 20*a^2*b^8*c + 160*a^3*b^6*c^2 - 640*a^4*b^4*c^3 + 1280*a^5*b^2*c^4 - 1024*a
^6*c^5)*e^2))*log(27*(5*b^4*c + 40*a*b^2*c^2 + 16*a^2*c^3)*e*f^12*x + 27*(5*b^4*c + 40*a*b^2*c^2 + 16*a^2*c^3)
*d*f^12 + 27/2*sqrt(1/2)*((b^8 - 8*a*b^6*c + 128*a^3*b^2*c^3 - 256*a^4*c^4)*e*f^8 + (a*b^13 - 8*a^2*b^11*c - 8
0*a^3*b^9*c^2 + 1280*a^4*b^7*c^3 - 6400*a^5*b^5*c^4 + 14336*a^6*b^3*c^5 - 12288*a^7*b*c^6)*sqrt(f^16/((a^2*b^1
0 - 20*a^3*b^8*c + 160*a^4*b^6*c^2 - 640*a^5*b^4*c^3 + 1280*a^6*b^2*c^4 - 1024*a^7*c^5)*e^4))*e^3)*sqrt(-((b^5
 + 40*a*b^3*c + 80*a^2*b*c^2)*f^8 - (a*b^10 - 20*a^2*b^8*c + 160*a^3*b^6*c^2 - 640*a^4*b^4*c^3 + 1280*a^5*b^2*
c^4 - 1024*a^6*c^5)*sqrt(f^16/((a^2*b^10 - 20*a^3*b^8*c + 160*a^4*b^6*c^2 - 640*a^5*b^4*c^3 + 1280*a^6*b^2*c^4
 - 1024*a^7*c^5)*e^4))*e^2)/((a*b^10 - 20*a^2*b^8*c + 160*a^3*b^6*c^2 - 640*a^4*b^4*c^3 + 1280*a^5*b^2*c^4 - 1
024*a^6*c^5)*e^2))) - 3*sqrt(1/2)*((b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*e^9*x^8 + 8*(b^4*c^2 - 8*a*b^2*c^3 + 1
6*a^2*c^4)*d*e^8*x^7 + 2*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3 + 14*(b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d^2)*e^
7*x^6 + 4*(14*(b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d^3 + 3*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d)*e^6*x^5 + (
b^6 - 6*a*b^4*c + 32*a^3*c^3 + 70*(b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d^4 + 30*(b^5*c - 8*a*b^3*c^2 + 16*a^2*
b*c^3)*d^2)*e^5*x^4 + 4*(14*(b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d^5 + 10*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)
*d^3 + (b^6 - 6*a*b^4*c + 32*a^3*c^3)*d)*e^4*x^3 + 2*(14*(b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d^6 + a*b^5 - 8*
a^2*b^3*c + 16*a^3*b*c^2 + 15*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d^4 + 3*(b^6 - 6*a*b^4*c + 32*a^3*c^3)*d^2)
*e^3*x^2 + 4*(2*(b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d^7 + 3*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d^5 + (b^6 -
 6*a*b^4*c + 32*a^3*c^3)*d^3 + (a*b^5 - 8*a^2*b^3*c + 16*a^3*b*c^2)*d)*e^2*x + ((b^4*c^2 - 8*a*b^2*c^3 + 16*a^
2*c^4)*d^8 + 2*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d^6 + a^2*b^4 - 8*a^3*b^2*c + 16*a^4*c^2 + (b^6 - 6*a*b^4*
c + 32*a^3*c^3)*d^4 + 2*(a*b^5 - 8*a^2*b^3*c + 16*a^3*b*c^2)*d^2)*e)*sqrt(-((b^5 + 40*a*b^3*c + 80*a^2*b*c^2)*
f^8 - (a*b^10 - 20*a^2*b^8*c + 160*a^3*b^6*c^2 - 640*a^4*b^4*c^3 + 1280*a^5*b^2*c^4 - 1024*a^6*c^5)*sqrt(f^16/
((a^2*b^10 - 20*a^3*b^8*c + 160*a^4*b^6*c^2 - 640*a^5*b^4*c^3 + 1280*a^6*b^2*c^4 - 1024*a^7*c^5)*e^4))*e^2)/((
a*b^10 - 20*a^2*b^8*c + 160*a^3*b^6*c^2 - 640*a^4*b^4*c^3 + 1280*a^5*b^2*c^4 - 1024*a^6*c^5)*e^2))*log(27*(5*b
^4*c + 40*a*b^2*c^2 + 16*a^2*c^3)*e*f^12*x + 27*(5*b^4*c + 40*a*b^2*c^2 + 16*a^2*c^3)*d*f^12 - 27/2*sqrt(1/2)*
((b^8 - 8*a*b^6*c + 128*a^3*b^2*c^3 - 256*a^4*c^4)*e*f^8 + (a*b^13 - 8*a^2*b^11*c - 80*a^3*b^9*c^2 + 1280*a^4*
b^7*c^3 - 6400*a^5*b^5*c^4 + 14336*a^6*b^3*c^5 - 12288*a^7*b*c^6)*sqrt(f^16/((a^2*b^10 - 20*a^3*b^8*c + 160*a^
4*b^6*c^2 - 640*a^5*b^4*c^3 + 1280*a^6*b^2*c^4 - 1024*a^7*c^5)*e^4))*e^3)*sqrt(-((b^5 + 40*a*b^3*c + 80*a^2*b*
c^2)*f^8 - (a*b^10 - 20*a^2*b^8*c + 160*a^3*b^6*c^2 - 640*a^4*b^4*c^3 + 1280*a^5*b^2*c^4 - 1024*a^6*c^5)*sqrt(
f^16/((a^2*b^10 - 20*a^3*b^8*c + 160*a^4*b^6*c^2 - 640*a^5*b^4*c^3 + 1280*a^6*b^2*c^4 - 1024*a^7*c^5)*e^4))*e^
2)/((a*b^10 - 20*a^2*b^8*c + 160*a^3*b^6*c^2 - 640*a^4*b^4*c^3 + 1280*a^5*b^2*c^4 - 1024*a^6*c^5)*e^2))))/((b^
4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*e^9*x^8 + 8*(b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d*e^8*x^7 + 2*(b^5*c - 8*a*
b^3*c^2 + 16*a^2*b*c^3 + 14*(b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d^2)*e^7*x^6 + 4*(14*(b^4*c^2 - 8*a*b^2*c^3 +
 16*a^2*c^4)*d^3 + 3*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d)*e^6*x^5 + (b^6 - 6*a*b^4*c + 32*a^3*c^3 + 70*(b^4
*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d^4 + 30*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d^2)*e^5*x^4 + 4*(14*(b^4*c^2 -
 8*a*b^2*c^3 + 16*a^2*c^4)*d^5 + 10*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d^3 + (b^6 - 6*a*b^4*c + 32*a^3*c^3)*
d)*e^4*x^3 + 2*(14*(b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d^6 + a*b^5 - 8*a^2*b^3*c + 16*a^3*b*c^2 + 15*(b^5*c -
 8*a*b^3*c^2 + 16*a^2*b*c^3)*d^4 + 3*(b^6 - 6*a*b^4*c + 32*a^3*c^3)*d^2)*e^3*x^2 + 4*(2*(b^4*c^2 - 8*a*b^2*c^3
 + 16*a^2*c^4)*d^7 + 3*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d^5 + (b^6 - 6*a*b^4*c + 32*a^3*c^3)*d^3 + (a*b^5
- 8*a^2*b^3*c + 16*a^3*b*c^2)*d)*e^2*x + ((b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d^8 + 2*(b^5*c - 8*a*b^3*c^2 +
16*a^2*b*c^3)*d^6 + a^2*b^4 - 8*a^3*b^2*c + 16*a^4*c^2 + (b^6 - 6*a*b^4*c + 32*a^3*c^3)*d^4 + 2*(a*b^5 - 8*a^2
*b^3*c + 16*a^3*b*c^2)*d^2)*e)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*f*x+d*f)**4/(a+b*(e*x+d)**2+c*(e*x+d)**4)**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (e f x + d f\right )}^{4}}{{\left ({\left (e x + d\right )}^{4} c +{\left (e x + d\right )}^{2} b + a\right )}^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*f*x+d*f)^4/(a+b*(e*x+d)^2+c*(e*x+d)^4)^3,x, algorithm="giac")

[Out]

integrate((e*f*x + d*f)^4/((e*x + d)^4*c + (e*x + d)^2*b + a)^3, x)